

The Great Refactor

How to secure critical open-source code against memory safety
exploits by automating code hardening at scale | Herbie Bradley &
Girish Sastry

The Great Refactor 2 | Bradley and Sastry

The Great Refactor
How to secure critical open-source code against memory safety exploits by
automating code hardening at scale | Herbie Bradley & Girish Sastry

__

This essay is part of The Launch Sequence, a collection of concrete, ambitious

ideas to accelerate AI for science and security.

Summary
Critical systems across the country run on software riddled with vulnerabilities. AI
now arms our adversaries with automated tools to find and weaponize these flaws.
But it is also a transformative opportunity to strengthen our defenses.

A major source of vulnerabilities in our digital infrastructure stems from code
written in languages like C and C, which are vulnerable to exploits targeting
computer memory. Estimates show that around 70% of vulnerabilities in these
codebases stem from memory exploits. But AI could cheaply translate code from
memory-unsafe to memory-safe languages, eliminating entire classes of
vulnerabilities while modernizing legacy codebases.

We propose “The Great Refactor,ˮ an effort to systematically rewrite key
open-source software libraries into the Rust programming language, which offers
strong guarantees of memory safety. This project would target widely used,
under-resourced libraries historically responsible for severe vulnerabilities.

The Great Refactor— structured as a Focused Research Organization FRO —
should aim to secure 100 million lines of code before 2030, in a transformative
effort to secure US critical infrastructure and our software supply chains. The US
government should fund this effort with $100 million, which could save billions in
cybersecurity costs. With AI advancing rapidly and Rust achieving industry
maturity, the time has come for urgent action.

https://ifp.org/the-launch-sequence
https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/
https://www.convergentresearch.org/about-fros

The Great Refactor 3 | Bradley and Sastry

Motivation
Most software that we run is insecure, a fact frequently exploited by Americaʼs
adversaries.1 But this insecurity is not an inevitable feature of code: we know how
to make our digital world much more resilient. The main bottleneck is labor —
translating code into safer languages, finding and fixing known vulnerabilities, and
formally verifying that software meets desired properties all require skilled
engineers to implement. Many software projects, especially open-source libraries
depended on by thousands of American businesses, cannot afford this labor.
Fundamentally, our security is limited by how much attention we can afford to give.

AI enters this picture as a force that can greatly reduce the cost of some types of
labor. As a result, the cybersecurity landscape is rapidly evolving into an arms race
where AI-powered offensive capabilities risk outpacing defensive measures.
Nation-state actors and sophisticated criminal organizations are already
experimenting with AI to help automate parts of the cyber kill chain.2 As the cost of
this new form of intelligence declines rapidly, we can shift the cybersecurity
offense-defense balance towards the defender.3

But how can we best use this intelligence to make our world more secure? Memory
safety vulnerabilities remain one of the dominant threats to our digital
infrastructure.4 These are bugs that occur when software accesses computer
memory in unsafe ways, allowing attackers to inject malicious code or crash
systems. Such vulnerabilities have underpinned some of the most devastating
cyberattacks in recent history (including Slammer, WannaCry, and Heartbleed),
with the economic damages of each measured in the billions of dollars.5 Our

5 See, e.g., estimates of the impact of Slammer, WannaCry, and Heartbleed.

4 Some estimate that 70% of critical CVEs Common Vulnerabilities and Exposures, the standard identifiers for
publicly known cybersecurity vulnerabilities) stem from memory corruption issues in C/C codebases.

3 A full analysis of the offense-defense balance changes from AI is beyond the scope of this piece, but we believe
it could improve significantly if, before a software system is deployed, the marginal cost of removing
vulnerabilities approaches 0.

2 See, e.g. a 2024 report from Microsoft and OpenAI.

1 The ODNIʼs 2023 Annual Threat Assessment report notes that “Foreign cyber actors are increasingly bold in their
malicious activity, targeting US public and private sector networks to steal data, disrupt operations, and potentially
pre-position for future activity.ˮ

https://xbow.com/blog/top-1-how-xbow-did-it/
https://www.ncsc.gov.uk/report/impact-ai-cyber-threat-now-2027
https://www.ncsc.gov.uk/report/impact-ai-cyber-threat-now-2027
https://epoch.ai/data-insights/llm-inference-price-trends
https://oodaloop.com/briefs/realnews/6262/
https://www.cbsnews.com/news/wannacry-ransomware-attacks-wannacry-virus-losses
https://www.darkreading.com/vulnerabilities-threats/more-than-a-half-million-servers-exposed-to-heartbleed-flaw
https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/
https://arxiv.org/abs/2504.13371
https://www.microsoft.com/en-us/security/blog/2024/02/14/staying-ahead-of-threat-actors-in-the-age-of-ai
https://www.dni.gov/files/ODNI/documents/assessments/ATA-2023-Unclassified-Report.pdf

The Great Refactor 4 | Bradley and Sastry

software supply chain is built upon libraries in memory-unsafe languages, often
written decades ago, that provide no inherent protection against some of the most
devastating attack vectors. Memory exploits are estimated to account for around
70% of all security vulnerabilities in C and C code.

Unlike many security flaws that require case-by-case patches, memory safety
vulnerabilities offer the highest returns on investment because they can be
proactively eliminated through translation to memory-safe languages.

Sample real-world memory safety vulnerabilities and their impacts

Library or
Component

Maintainers at
time of
vulnerability

User base Memory-safety
vulnerability

Impact

OpenSSL 5 core
developers

≥ ½ million servers
affected

Heartbleed 2014 –
buffer over-read

Data/key leakage;
cleanup &
re-issuance cost
estimated at ≥ $500
M

Dnsmasq

1 primary
maintainer

Included in most Linux
distros, home routers,
Android and IoT
firmware

Multiple buffer
overflows in DNS and
DHCP handling (e.g.
heap overflow in DNS
query reply,
CVE201714491)
2017

Enabled remote
code execution on
affected devices
(many routers and
IoT devices)

BlueZ Linux
Bluetooth)

12
developers

Default Bluetooth
stack in Linux; used by
PCs, smartphones, and
IoT

Heap buffer overflow
in L2CAP packet
processing Linux
kernel
CVE20171000251)
allowing remote code
execution via
Bluetooth 2017

Complete device
takeover via wireless
Bluetooth (no pairing
needed)

Exim MTA

12
maintainers

Installed on 57% of
public email servers at
the time of the 2019
disclosure, per Rapid7
scans

CVE201910149 (and
later)
Heap overflow in
string expansion logic

Remote root on mail
servers; used in
botnets and
persistent backdoors

https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/
https://www.wired.com/2014/04/cii/?utm_source=chatgpt.com
https://www.wired.com/2014/04/cii/?utm_source=chatgpt.com
https://www.wikiwand.com/en/articles/Heartbleed
https://www.wikiwand.com/en/articles/Heartbleed
https://nvd.nist.gov/vuln/detail/cve-2014-0160
https://www.eweek.com/security/heartbleed-ssl-flaw-s-true-cost-will-take-time-to-tally/
https://thekelleys.org.uk/dnsmasq/doc.html?utm_source=chatgpt.com
https://thekelleys.org.uk/dnsmasq/doc.html?utm_source=chatgpt.com
https://nvd.nist.gov/vuln/detail/cve-2017-14491?utm_source=chatgpt.com
https://www.rapid7.com/db/vulnerabilities/dnsmasq-cve-2017-14491/?utm_source=chatgpt.com
https://www.rapid7.com/db/vulnerabilities/dnsmasq-cve-2017-14491/?utm_source=chatgpt.com
https://www.rapid7.com/db/vulnerabilities/dnsmasq-cve-2017-14491/?utm_source=chatgpt.com
https://www.bluez.org/about/history/?utm_source=chatgpt.com
https://www.bluez.org/about/history/?utm_source=chatgpt.com
https://nvd.nist.gov/vuln/detail/cve-2017-1000251?utm_source=chatgpt.com
https://www.blackarrowcyber.com/blog/tag/black%2Bbasta?utm_source=chatgpt.com
https://www.blackarrowcyber.com/blog/tag/black%2Bbasta?utm_source=chatgpt.com
https://www.blackarrowcyber.com/blog/tag/black%2Bbasta?utm_source=chatgpt.com
https://www.blackarrowcyber.com/blog/tag/black%2Bbasta?utm_source=chatgpt.com
https://code.exim.org/exim/exim/commits/branch/master?page=43
https://code.exim.org/exim/exim/commits/branch/master?page=43
https://blog.rapid7.com/2019/06/06/active-exploitation-of-exim-cve-2019-10149/
https://blog.rapid7.com/2019/06/06/active-exploitation-of-exim-cve-2019-10149/
https://nvd.nist.gov/vuln/detail/cve-2019-10149
https://pentest-tools.com/blog/exim-server-rce-vulnerabilities?utm_source=chatgpt.com
https://pentest-tools.com/blog/exim-server-rce-vulnerabilities?utm_source=chatgpt.com
https://pentest-tools.com/blog/exim-server-rce-vulnerabilities?utm_source=chatgpt.com
https://pentest-tools.com/blog/exim-server-rce-vulnerabilities?utm_source=chatgpt.com

The Great Refactor 5 | Bradley and Sastry

Patching these vulnerabilities requires maintainers to understand often-complex
and subtle security bugs, and apply fixes in a timely manner. Moreover, there is a
“long tailˮ of small libraries with vulnerabilities that are open-source passion
projects. These often have a handful of maintainers who volunteer their time to
develop these libraries — easy pickings for a determined adversary. For example,
in 2021 the Log4j vulnerability was discovered: an attack allowing China, Iran, and
ransomware outfits to compromise critical systems globally (including US state
government networks) that stemmed from an open-source Java library maintained
by just a handful of volunteers.6

Security engineers have long dreamed about the possibility of replacing insecure
and brittle software with memory-safe code. Rust is the worldʼs most used
memory-safe programming language. As well as being highly performant, Rust
enforces strict rules over the use of memory as soon as code is compiled, rather
than when it is run, drastically reducing the potential for bugs.

Historically, the economics of rewriting code have been deeply unfavorable.
Converting even a moderately sized C codebase into Rust would typically require
several person-years of engineers expert in Rust — a small and expensive talent
pool.7 For comparison, the Linux kernel's partial Rust implementation required
thousands of engineer-hours, with costs running into millions of dollars at standard
Silicon Valley rates.

But AI could transform the economics of code translation. AI systems can now
write idiomatic Rust that previously required years of experience. Translation
quality has reached a tipping point where human review time, rather than
translation time, becomes the primary bottleneck. And AIʼs programming capability
is growing fast, with AI coding agents rapidly improving in their ability to
autonomously fix issues and implement features.8 This is a trend we can bet on.
Meanwhile, the Rust ecosystem has matured enough to support real-world
production deployments at major organizations like Microsoft, Google, and

8 At some big tech companies like Google, more than a quarter of all new code is written by AI.

7 According to BairesDev, "the talent pool for C programmers is a thousand times bigger than Rust, at least for
now."

6 We note that Log4j was not specifically a memory-safety exploit, but the state of the libraryʼs maintenance is
representative of many memory unsafe codebases.

https://en.wikipedia.org/wiki/XZ_Utils_backdoor
https://www.wikiwand.com/en/articles/Log4Shell
https://www.zdnet.com/article/after-log4j-white-house-worries-about-the-next-big-open-source-flaw/
https://apps.dtic.mil/sti/citations/AD0758206
https://www.anthropic.com/claude-code
https://refact.ai/blog/2025/1-agent-on-swe-bench-verified-using-claude-4-sonnet/
https://www.darkreading.com/application-security/google-microsoft-take-refuge-in-rust-languages-better-security
https://www.youtube.com/live/6mZRWFQRvmw?t=26575s
https://www.forbes.com/sites/jackkelly/2024/11/01/ai-code-and-the-future-of-software-engineers/
https://www.bairesdev.com/blog/when-speed-matters-comparing-rust-and-c/

The Great Refactor 6 | Bradley and Sastry

Amazon, with tangible security and maintainability benefits.9 Securing 100 million
lines of critical code could lead to saving billions of dollars.10

However, market forces alone cannot solve this problem. The history of
cybersecurity in the Internet age makes that clear. Critical libraries that serve as
foundational dependencies have minimal security resources despite their outsized
impact on the digital ecosystem. While individual companies have incentives to
secure their own codebases, the distributed nature of open-source maintenance
creates a coordination problem preventing adoption of systematic solutions,
leaving potentially transformative security gains on the table.

Solution
The Great Refactor is our proposal to systematically identify and refactor key
open-source software libraries into Rust using AI. If successful, this project could
significantly reduce a key class of vulnerabilities that remain endemic to our
software supply chains. This project also provides a golden opportunity to
significantly improve the efficiency and maintainability of our software supply
chain. Where older translation tools would attempt the most direct translation
possible, we can use AI to simultaneously translate and refactor our code into
better architectures, where appropriate.

We think the best vehicle for this ambitious goal is a Focused Research
Organization FRO11 a purpose-built, time-limited non-profit organization
designed to tackle a clear technical objective that requires coordination across
disciplines. Unlike traditional academic labs or startups, a FRO can marshal
long-term funding and top-tier engineering talent while staying mission-focused

11 We examined other org design options, including a further DARPA project, a new team within government, an
FFRDC housed within a nonprofit, etc. We settled on an FRO because we believe independence (to more easily
attract top talent), the ability to draw on private sector funding, and flexibility of work direction (given the rapidly
shifting capabilities of AI are crucial to success.

10 $2B in savings assuming a cost per exploited incident of $4.8M on average, a cost to fix a vulnerability at
$3000, that 0.5% of vulnerabilities are exploited, and 70% rate of vulnerabilities stemming from memory-safety.
See appendix for detailed costs & savings.

9 Android successfully cut the percentage of memory safety vulnerabilities from 76% to 24% over 6 years.

https://aws.amazon.com/blogs/opensource/why-aws-loves-rust-and-how-wed-like-to-help/
https://queue.acm.org/detail.cfm?id=3722542
https://claroty.com/team82/blog/open-source-use-in-critical-infrastructure-under-scrutiny
https://fas.org/publication/focused-research-organizations-a-new-model-for-scientific-research/
https://fas.org/publication/focused-research-organizations-a-new-model-for-scientific-research/
https://security.googleblog.com/2024/09/eliminating-memory-safety-vulnerabilities-Android.html

The Great Refactor 7 | Bradley and Sastry

and driven by the public interest.12 A successful effort will need to integrate
expertise across security engineering and AI to resolve the engineering and
logistical hurdles. The FRO model is uniquely suited to deliver on this kind of
complex, interdisciplinary project.

Existing efforts in the Rust translation space are part of the puzzle. DARPAʼs
TRACTOR program funds translation research projects starting from the C
language and encompassing both AI tools and older methods, aiming to develop
novel techniques for more effective translation. Meanwhile, large tech companies
like Microsoft are using tools internally, including AI, to translate key code into
Rust.

This proposal would complement these efforts. Its mission: to apply the state of
the art in Rust AI translation to critical open-source libraries (particularly in C and
C, and ensure their widespread adoption. Success requires more than just
working translation tools — the FRO should do the work to ensure that the
newly-translated Rust libraries have the support they need to flourish, rather than
simply being dropped from above. This will involve engaging with maintainers of
existing libraries, building AI tools and documentation to help migration, and
putting careful thought into the structure of translated code to make new libraries a
delight to maintain.

A further benefit is in building infrastructure for formal verification efforts. Formal
verification involves creating a mathematical model of a program and its intended
behavior, then using logical proofs to demonstrate that the implementation
matches the specification, which has many security benefits. Rust is an ideal
intermediate step,13 so this initiative can help significantly improve our software
security in the long run.

Program roadmap
The FRO should be tasked with applying the state-of-the-art AI models and Rust
translation tools to key open-source libraries, and ensuring their widespread

13 This is because the Rust compiler mathematically enforces strong guarantees of memory safety when the
program is compiled.

12 Successful examples include FutureHouse and the Lean FRO.

https://www.darpa.mil/research/programs/translating-all-c-to-rust
https://www.youtube.com/watch?v=1VgptLwP588
https://arxiv.org/abs/2505.15858
https://arxiv.org/abs/2505.15858
https://www.futurehouse.org/
https://lean-fro.org/

The Great Refactor 8 | Bradley and Sastry

adoption. We anticipate that due to the rapidly improving software engineering
ability of AI, this will require surprisingly little fundamental R&D effort.14 Most of the
technical work is in deeply understanding the target codebase for translation,
using AI tools to design the new Rust libraries, and in verifying that the new code
has the correct functionality.

A $100 million investment would empower the FRO to hire a team of tens of
security engineers, AI researchers, and administrators.15 Over a 35 year timeline,
the FRO would:

● Identify the most important libraries to secure. The FRO should develop a
systematic approach to finding high-value targets, combining metrics like
library popularity, maintenance status, security importance, and translation
complexity. Ideal candidates share several common properties: they are a key
dependency for widely-used software, have minimal security or maintenance
resources, and possess sufficient test coverage to validate translation
correctness. Promising domains for initial work include parsing libraries,
network protocol implementations, and system-level utilities—areas historically
responsible for some of the most severe vulnerabilities.

● Ensure robust validation of translated code. Translated code needs to be
correct in function, free of bugs, and idiomatic & maintainable Rust. The FRO
should develop a robust validation engine that goes beyond unit tests and
AI-assisted fuzzing to automatically assess the output code for correct
functional equivalence with the original library. Security and Rust experts
should be employed to review the output as a final validation layer—assisted by
AI tooling.

● Build a basis for defense-dominant cybersecurity. Beyond simply translating
code, the Great Refactor should aim to create more maintainable,
well-documented Rust code. This could be the launching point for future
security efforts, including formally verifying the properties of code, building

15 A rough estimate that assumes 70% of the costs going towards expert staff and the remaining 30% to services
and administrative expenses.

14 Even in cases where current AI systems struggle, we think it makes little sense to throw large amounts of
resources into building complex scaffolding for specialized translation tasks, when trends should lead us to expect
general AI capabilities to improve and increasingly solve some parts of this problem by default.

The Great Refactor 9 | Bradley and Sastry

toward even stronger security guarantees. AI systems can handle the drudgery
of documentation and leverage their vast knowledge of programming idioms to
create highly maintainable code.

● Develop a repeatable playbook for adoption. Close engagement with the
maintainers and major users of existing open-source libraries is key to ensure
smooth migration. The FRO should aim to ensure the widest possible adoption
of translated libraries. This should include developing AI tools and
documentation to ease transition for existing developers, and advocating the
use of the Rust libraries to key stakeholders like Linux distribution maintainers.

Success metrics would aim to track the long-term sustainability of translated
libraries. This means not just the number of completed translations, but also
adoption rates, security impact measurements, and ecosystem health indicators.

Recommended government actions
The US Government should:

● Establish dedicated FRO funding. DARPA, NSF, or a new interagency initiative
should allocate $5075 million over 5 years specifically for The Great Refactor
FRO. This funding could be tied to specific milestones, like successfully
hardening critical codebases depended on by government software.

● Create an oversight and advisory structure. Assemble a world-class technical
advisory board with representatives from the NSA, CISA, the DoD, and industry
to provide strategic guidance and ensure that the FROʼs work targets national
security priorities.

● Integrate with existing procurement and compliance frameworks. Work with
GSA and other agencies to update software procurement guidelines to favor
memory-safe alternatives, creating market incentives for adoption of translated
libraries.

● Leverage industry co-investment. Partner with leading American tech
companies like Google, Microsoft, and Amazon — who have already invested
heavily in Rust adoption — to provide both funding and technical expertise.

The Great Refactor 10 | Bradley and Sastry

Industry partners could contribute approximately 3040% of total funding while
gaining early access to secure libraries critical to their infrastructure.

By accelerating this effort, we can use AI to break the cyber arms race and
fundamentally shift the economics of cybersecurity from perpetual patching
toward systemic prevention, creating more resilient digital infrastructure for
everyone.

Appendix

Risks and limitations
The capability of AI in software engineering is improving rapidly, so we believe this
ambitious proposal to be technically very promising. However, weʼd be remiss not
to mention some important potential limitations:

● Eliminating memory-safety shifts attacks to other vulnerabilities. While
memory-safety vulnerabilities are a large share of common exploits, many
attacks in practice often leverage other methods, particularly social
engineering. Securing against all possible attack vectors is beyond the scope
of this project; as the attack surface area from memory unsafety is reduced, we
expect the focus of attackers to shift elsewhere.

● Navigating the AI reliability frontier. AI is advancing rapidly at software
engineering tasks, but there are still questions about its reliability, especially at
potentially sensitive tasks like writing secure code. Even if a codebase has
extensive automated tests, they may not be sufficient to have confidence in the
equivalence of a full Rust translation. However, AI research (i.e., the
discriminator-generator gap)16 suggests that itʼs possible to automatically verify
that produced code does not introduce new vulnerabilities and matches the
original codebase in function. By developing rigorous testing protocols, relying
on expert human oversight at key development milestones, and validating

16 The discriminator-generator gap is the observed difference in performance between a model's ability to
generate high-quality outputs (generator) and its ability to discriminate, critique, or effectively evaluate those
outputs (discriminator).

https://zimperium.com/blog/unveiling-the-tactics-of-lapsus-a-review-of-internal-attacks-vectors-mobile-device-exploitation-and-social-engineering-techniques
https://arxiv.org/abs/2502.14202
https://cdn.openai.com/papers/critiques.pdf
https://www.wikiwand.com/en/articles/Differential_testing
https://arxiv.org/abs/2206.05802

The Great Refactor 11 | Bradley and Sastry

translations incrementally, we can mitigate these risks while capitalizing on AI's
rapid improvements in code generation and analysis.

● Software deployment and update adoption remains a bottleneck. Even the
most secure code provides limited protection if organizations fail to deploy
updates promptly. This proposal addresses the creation of memory-safe
alternatives but doesn't directly solve the constant effort to ensure widespread
adoption of newer, more secure versions. Critical infrastructure often runs on
outdated software due to compatibility concerns, organizational inertia, or fear
of disrupting stable systems. Incentives to encourage timely updating could
help increase the odds that more-secure dependencies are actually used.

● Adoption may be hindered by lack of widespread Rust expertise. Rust
translations may be harder to adopt if the maintainers of existing libraries do
not have sufficient Rust expertise, which is often a current bottleneck for Rust
translation efforts. This can be mitigated with a coordinated effort to engage
with library maintainers early in the process and provide comprehensive
migration support, including AI-powered developer tools. While some
resistance exists due to programmer preferences for familiar languages, the
growing momentum in the Rust ecosystem and clear security benefits of
memory-safe alternatives suggest this cultural barrier will diminish as adoption
increases.17

Funding requirements
We estimate that this FRO will need roughly $100 million over 5 years to achieve
its ambitions, broken down as follows:

Cost Bucket Salary/Assumptions Annual $M Total $M 5Y

Personnel

5x AI engineers $350k–$500k 2.125

17 Rust's rules about how data is handled force programmers to organize their code in ways that veteran C
programmers may find restrictive. Unlike C, which lets programmers freely manipulate memory however they
want, Rust requires clearer boundaries between different parts of a program. However, these same restrictions
that cause initial frustration are what make Rust programs more reliable, easier to update, better at handling
multiple tasks simultaneously, and much less prone to security flaws.

The Great Refactor 12 | Bradley and Sastry

15x Rust systems engineers
to validate translations

$200k 3

5x Security engineers $220k 1.1

3x Formal verification
experts

$220k 0.66

5x DevRel to smooth
adoption

$200k 1

5x DevOps/infra $220k 1.1

5x Exec + admin $200k 1

1.4x multiplier for benefits,
taxes

 13.98 69.9

AI services $1m/yr in token costs 1 5

Grants to OSS maintainers Stipends + integration
support for a subset of
projects

2 10

Third-party red-teaming &
bug-bounties

 1 5

General & Administrative Rent, insurance, legal,
outreach, board, travel

1.65 8.25

Total 19.63 98.15

Funding sources should include a mix of public and private funding. US
Government funding could be tied to specific objectives that are particularly
desirable for the public interest — for example, specifically to carry out Rust
translation work on open-source codebases relevant for government use, or to
translate internal government legacy code.

This project can produce a high ROI; the cost of memory-safety incidents is
significant, and we estimate savings of $2B from securing 100 million lines of
code. This assumes a cost per exploited incident of $4.8M on average, a cost to fix
a vulnerability at $3000, that 0.5% of vulnerabilities are exploited, and 70% rate
of vulnerabilities stemming from memory-safety.

The Great Refactor 13 | Bradley and Sastry

Further resources
● MemorySafety.org, Memory safety issues, n.d.

Memory safety issues remain one of the most prevalent and dangerous security vulnerabilities in
modern software. See also this explainer by the NSA and CISA.

● DARPA, Translating All C To Rust TRACTOR program, n.d.

The DARPA Translating All C To Rust TRACTOR program aims to research tools and techniques
that can automatically translate C code to memory-safe Rust while preserving functionality,
addressing one of the root causes of software vulnerabilities in critical systems used throughout
government and industry.

● Convergent Research, Focused Research Organizations FROs, n.d.

Focused Research Organizations FROs represent a new model for conducting scientific
research that fills the gap between academia and industry, tackling important technical problems
that don't fit neatly into existing research structures by bringing together dedicated teams with
focused missions and specific deliverables.

https://www.memorysafety.org/docs/memory-safety/
https://media.defense.gov/2025/Jun/23/2003742198/-1/-1/0/CSI_MEMORY_SAFE_LANGUAGES_REDUCING_VULNERABILITIES_IN_MODERN_SOFTWARE_DEVELOPMENT.PDF
https://www.darpa.mil/research/programs/translating-all-c-to-rust
https://www.convergentresearch.org/about-fros
https://www.gap-map.org/

	
	The Great Refactor
	
	
	The Great Refactor
	Summary
	Motivation
	Solution
	Program roadmap
	Recommended government actions

	Appendix
	Risks and limitations
	Funding requirements

	Further resources

