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This essay is part of The Launch Sequence, a collection of concrete, ambitious 

ideas to accelerate AI for science and security. 

Summary 
Current AI for science consists of specialized tools built on curated datasets, but 
much of science is hands-on experimentation and unrecorded tacit knowledge. 
Science leadership will belong to whoever figures out how to use AI for this messy 
part of science. For AI scientists to become truly capable, they will need 
multimodal datasets capturing that tacit knowledge.  

We propose an ambitious effort to generate and use the multimodal data 
necessary to unlock the full potential of AI for science. This program would create 
“Unstructured Data Generation Labsˮ that simultaneously conduct breakthrough 
research, comprehensively record everything from bodycam videos to keystrokes, 
and use that data to make the whole process more productive.  

Each organization will focus on equipment-defined domains like biotechnology, 
advanced materials and manufacturing, or micro/nanotechnology. Institutional 
block grants, expert-review-based tranches, and default sunsetting will give the 
labs the freedom to pursue unexpected directions while maintaining oversight. A 
security organization will mitigate potential risks from malicious actors misusing 
the data and models. 

 

https://ifp.org/the-launch-sequence
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The program will cost $2 billion over eight years. Implementation will have three 
phases:  

● Phase 1 $200 million over two years for 20 pilot organizations. 

● Phase 2 Down-selection to 5 organizations that receive $50 million per year 
over three years to generate initial datasets and breakthroughs. 

● Phase 3 An additional $50 million per year over three years to scale up 
datasets and transfer technology to the broader innovation ecosystem. 

This approach could accelerate research productivity by 10100 in targeted fields 
while maintaining safety through controlled access and comprehensive oversight. 

Motivation 
AI-powered science represents civilization-scale opportunity. The dream of AI for 
science is straightforward: a legion of graduate students, technicians, and 
potentially senior researchers who could work 24/7 anywhere in the world, don't 
get bored or distracted, and don't require years of training before they are 
productive. Functional AI scientists could reverse decades of declining research 
productivity, accelerate the discovery of wonder materials and life-saving drugs, 
and unlock transformative energy technologies.  

Why we don’t have AI scientists: The tacit 
knowledge gap 
Current AI for science like AlphaFold or AI-designed catalysts have demonstrated 
incredible potential, but they share a key limitation: models donʼt actually “knowˮ 
how to do science. 

Consider what it actually takes to develop new materials. Say you want AI to 
accelerate scalable carbon nanotube synthesis for next-generation electronics. 
The published literature describes successful synthesis conditions: “heat carbon 
feedstock to 800°C in CVD reactor with nickel catalyst.ˮ  But actually making this 
work requires knowing that the reactor needs 3 hours to thermally equilibrate, that 
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contamination from the previous run affects yield, that "nickel catalyst" means 
specific particle sizes prepared in a particular way, and that the carbon feedstock 
quality varies by supplier batch. When synthesis fails — which it does constantly 
— success depends on recognizing whether the problem is temperature 
uniformity, gas flow turbulence, catalyst poisoning, or substrate preparation. This 
troubleshooting process involves adjusting dozens of parameters based on visual 
cues, equipment sounds, intermediate measurements, and hard-won intuition 
about what “normalˮ looks like. 

The same pattern repeats across scientific domains. Cell culture protocols omit 
that different incubator positions have temperature gradients affecting growth 
rates. Quantum optics papers don't mention that laser alignment drifts with 
building vibrations throughout the day. Materials characterization requires knowing 
which sample preparation artifacts look like real signals. Even computational work 
depends on physical intuition — molecular dynamics simulations need parameters 
derived from experimental observations, and validating results requires 
understanding how real molecules actually behave. 

This tacit knowledge gap explains why most AI for science remains narrowly 
specialized. Current approaches work when the relevant knowledge can be 
captured in clean datasets — protein structures, chemical properties, literature 
relationships. But they fail when success depends on integrating information 
across multiple scales, modalities, and domains of expertise. Training AI only on 
papers and databases is like trying to learn surgery from textbooks without ever 
watching an operation or handling instruments. 

Most work in science doesnʼt happen entirely in computers or make for 
well-structured datasets. Research papers describe successful outcomes, not the 
full iterative process that creates them. So much of science is the prosaic work to 
adjust equipment, troubleshoot a failed experiment, or notice “huh, thatʼs funny.ˮ  
Even the work that does happen in computers (simulations, trying to make sense 
of sensor outputs, or designing experiments) needs to be grounded in physical 
reality.  

AlphaFold leveraged a meticulously gathered database of protein structures. Most 
approaches to AI for science follow this pattern: collect a meticulously curated 
dataset either by hand or with “self-driving labsˮ and then train a specialized model 
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on it, whether that dataset is papers, potential materials, or druggable targets. 
Current “AI-for-scienceˮ approaches resemble AI before Large Language Models 
LLMs models with impressive, but narrow applications, trained on curated 
datasets of text or images.  

However, the massive breakthrough that enabled the current generation of AI was 
not meticulously gathered datasets, but the ability to train on the entire internet. 
The internet is basically a compilation of what humanity does digitally. As a result, 
AI has become incredibly good at things that live entirely in computers — writing, 
coding, generating video. But these capabilities havenʼt translated to broadly 
useful AI for science.  

Why existing institutions won’t solve this problem  
To produce the unstructured data needed to actually make AI broadly useful for 
science, we need new labs. This is because existing research institutions have 
fundamental organizational and incentive barriers that will prevent them from 
succeeding at this mission. Universities are structured around independent labs 
and training graduate students; this structure is good for traditional ways of doing 
science, but will run counter to the organization-wide coordination needed to 
create and use unstructured data. Both national labs and universities have become 
incredibly bureaucratic — whereas building and running these data generation labs 
successfully requires the ability to move quickly and make non-consensus 
decisions. Moreover, this work will require innovative team organization, new 
workflows, and built-from-scratch equipment that will run counter to how existing 
organizations do things. It would be just as hard, if not harder, to retrofit existing 
equipment and overhaul operating procedures, compared to standing up entirely 
new labs.  

Corporations are unlikely to do this work except perhaps in highly profitable niches 
like health-focused biotechnology. Large corporations have already gutted their 
R&D departments, shortened their timescales, and offloaded much of their 
innovation to startups. Startups experience extreme pressure to specialize in 
profitable niches and build products rather than do broadly applicable research 
work. And, while the profit-seeking is a useful feedback loop, it will also keep 
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companies from sharing their outputs with the larger scientific community that can 
leverage them.  

Solution 
To unlock AI that is truly useful in many areas of science, we need to create a new 
kind of institution: labs that simultaneously do cutting-edge science, collect data 
on how that science actually happens, and use that data to train models that they 
use to do the science even better. 

These “unstructured data labsˮ need the following ingredients: 

● Scientists who are doing serious work to create actual discoveries and 
inventions. 

● Heavily “instrumentedˮ labs to collect data on everything that is going on — 
from bodycams, to logging every computer keystroke and instruction sent to 
every machine.  

● Separate teams devoted to doing the actual research, data collection and AI 
tools, diffusing data and knowledge out of the lab, and dedicated technical 
support for all of the other groups. Itʼs critical that each of these teams have 
similar status and resourcing. 

● Carefully constructed incentives to get the best people to do actually useful 
work.  

Scope 
The labs must do three things: 

1. Serious research work 

2. Collect data on all aspects of how that work happens 

3. Train productivity-enhancing AI models on that data 
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This is a broad scope for a single organization, but itʼs important that it all happen 
under one roof for two reasons:  

1. If you donʼt collect data on serious work, the resulting models wonʼt actually be 
able to do serious work.  

2. It wonʼt be obvious at first what kind of data or metadata will be important for 
creating useful tools so if you donʼt do all three, you could end up collecting 
data that is useless for creating useful models.  

Certain scientific fields will advance our ability to manipulate the physical world 
and determine US competitiveness over the next decades. We should scope labs 
around the equipment and techniques that define these areas, rather than placing 
bets on any narrow topic du jour. This will allow them to do useful work over their 
full lifespan, rather than chasing a particular goal that could fall out of vogue. Initial 
fields may include: 

● Biotechnology and biomanufacturing: Cell culture, genetic engineering, 
protein production, and therapeutic development.  

● Quantum systems and photonics: Laser spectroscopy, quantum sensing, 
optical component design, and precision measurement systems. 

● Advanced materials and manufacturing: Synthesis of novel composites, 
advanced manufacturing processes, materials characterization, and scalable 
production methods. 

● Micro- and nanotechnology: Cleanroom fabrication, electron beam 
lithography, micro-electro-mechanical systems devices, and nanoscale 
characterization techniques. 

● Systems biology and ecology: raising and analyzing animals, plants, fungi, 
along with the fieldwork to discover new secrets of nature.    

These institutions need unconventional funding mechanisms to get the best talent 
doing ambitious work and enable meta-experiments on data collection and AI 
tools. Traditional project-based grants and line-item budgeting would constrain the 
iterative, constantly changing work to build functional systems, scare off the best 
talent, and push the organization towards showmanship instead of real results. 
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Instead, funding for these labs should come from a combination of institutional 
block grants and ongoing contracts with industry partners and government 
agencies who want to use both the labsʼ research outputs and data. The former 
could be implemented as an Other Transaction Authority OTA, potentially using 
the recently-proposed XLabs framework.  

This proposal will cost $2 billion over the course of 8 years — a low price for the 
potential to unlock broadly-useful AI for science.  

Program oversight and governance 
Oversight should happen through comprehensive review-based tranches at the 
end of years two and five.  

Because this type of organization is so new, it will be hard to successfully select 
the exact right proposals up front. Instead, the initiative should be started as a 
competitive pilot program with down-selection after the first two years. Those 
selected organizations should then be subject to comprehensive review three 
years later to decide whether to continue their funding.  

The reviews should require each lab to be retroactively judged by experts on what 
they've accomplished at the predetermined intervals. This approach is different 
from milestone-based funding because the nature of research definitionally 
involves uncertain outcomes and timelines. However there should be a broad 
agreement on what “goodˮ looks like in order to move onto each new tranche. The 
MRC Laboratory of Molecular Biology used this approach to win 12 Nobel prizes.  

Furthermore, the labs should sunset after eight years by default. To make 
organizations with a wide mandate politically palatable, avoid mission creep, and 
mitigate the tendency for organizations' purpose to become nothing more than 
self-preservation, the organizations should sunset by default after a fixed period of 
time. This time period should be more than five years, but less than ten. 

 

https://www.rebuilding.tech/posts/launching-x-labs-for-transformative-science-funding
https://www2.mrc-lmb.cam.ac.uk/
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Timeline  

Phase 0  

● Appoint a program director  

● Put out call for proposals  

Phase 1: 2 Years, $200 million 

● Award 20 organizations $10 million each to demonstrate proof-of-concept. 

Success looks like: functional instrumentation prototypes, initial datasets, 
evidence of research productivity under heavy monitoring. While many 
organizations will “fail,ˮ  their work will provide valuable negative results and 
they can still go on to raise private funding to continue their work.   

Phase 2: 3 Years, $900 million 

● Down-select to five organizations based on comprehensive expert review. 

● Full $50 million/year funding for each of the five organizations.  

Success looks like: Initial research breakthroughs internal to the labs that 
wouldnʼt have happened without the AI and useful datasets.     

Phase 3: 3 Years, $900 million 
● Re-authorized organizations continue research work and data collection with 

additional focus on diffusing breakthroughs, data, and techniques into the 
broader innovation ecosystem. 

● At the end of this phase, the organizations should shut down by default. They 
could figure out an ongoing business model as an industry consortium, be 
acquired by a corporation or specific agency, etc. 

Success looks like: Robust datasets, useful AI science tools diffused into the 
US innovation ecosystem, research breakthroughs external to the labs.  
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Risk mitigation 
A big reason to fund this work with public resources is to do it in a way that adds 
security while broadening access: instead of leaving unstructured data generation 
to happen at some VC-backed private AI firm for its own use, this proposal can:  

1. Make the data a public good by providing free or subsidized access to 
legitimate and responsible users. 

2. Make it actually hard for terrorists or irresponsible users to access the data.  

Like any effort to increase AI capabilities and enhance scientific productivity, 
unstructured data generation labs may raise several concerns about privacy and 
risks. Best practices in AI security and risk mitigation are moving quickly. Instead 
of a static set of policies that will likely be obsolete by the time these labs are built, 
a separate security organization should create, update and implement best 
practices for minimizing the chances that the labs or their outputs will aid malicious 
actors.  

Some examples of security policies might include the following, though the exact 
policies should be left up to the security organization:  

● Excluding the highest-risk research areas like gain-of-function virology or 
weapons-relevant chemistry. 

● Limiting raw data access and more powerful models to responsible users who 
have been thoroughly vetted.  

● For privacy reasons, all datasets should be scrubbed of individually identifiable 
information like faces, voices, etc. 

The security function could be done either by a new organization that is spun up 
as part of this effort or be contracted out to existing organizations that already 
have experience with risk mitigation and security for powerful models.   

However, there is no airtight way to increase general-purpose scientific 
capabilities without increasing the ability for people to do bad things with it.  

 

https://www.whitehouse.gov/presidential-actions/2025/05/improving-the-safety-and-security-of-biological-research/
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Recommended actions 

Congressional authorization 

● Authorize $2 billion over 8 years through NDAA or America COMPETES 
reauthorization for “Unstructured Data Generation Labs for AI Science.ˮ  

● Establish a joint program office spanning DOE, DOD, NSF, and NIH with 
streamlined oversight authority. 

Appropriations 

● Phase 1 $200 million over 2 years for competitive pilot program 20 
organizations × $10 million each) 

● Phase 2 $900 million over 3 years for down-selected institutes 5 
organizations × $60 million/year each) 

● Phase 3 $900 million over 3 years for continued operations and technology 
diffusion 

Implementation mechanisms 

● Enable Other Transaction Authority OTA for block grant funding without 
traditional line-item oversight. 

● Authorize industry cost-sharing agreements allowing private partners to 
contribute 2550% funding in exchange for preferential data access. This cost 
sharing will enable work to start more quickly and make sure that the work is 
tied more closely to outcomes that are actually useful.  

● Establish expedited security clearance process for researchers working on 
dual-use data collection systems. 

● Create statutory exemption from standard federal procurement rules to enable 
rapid hiring of top talent at competitive salaries. 

Oversight structure 

● Appoint Senate-confirmed program director within 90 days of authorization. 
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● Mandate comprehensive reviews at years 2 and 5 by independent expert 
panels, with automatic sunset after 8 years unless explicitly reauthorized. 

● Mandate chemical, biological, radiological, and nuclear CBRN capability 
evaluations before releasing any AI models or datasets to external users. 

Further resources 
● James Phillips, “Ideas on scaling technoscience,ˮ  n.d. 

 

On block grants and comprehensive review. 

● Caleb Watney, “Launching XLabs for Transformative Science Funding,ˮ  n.d. 

● Understanding AI, “I got fooled by AI-for-science hype,ˮ  n.d. 
 

On the limitations of current approaches in AI-for-science. 

 

https://jameswphillips.substack.com/p/my-metascience-2022-talk-on-new-scalable
https://www.rebuilding.tech/posts/launching-x-labs-for-transformative-science-funding
https://www.understandingai.org/p/i-got-fooled-by-ai-for-science-hypeheres
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